Printed Pages - 5

Roll No.:....

1

B. E. (Fifth Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(IT Engg. Branch)

THEORY of COMPUTATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Each part (a) is compulsory and from parts (b), (c) and (d), attempt any two part. Part (a) carries 2 marks and part (b), (c) and (d) each one carries 7 marks.

Unit-I

1. (a) Explain deterministic Finite Automata.

2

(b) Consider a NFA in fig. Find its DFA.

7

(c) Consider a Mealy machine shown in below figure.

Construct a Moore machine equivalent to this Mealy machine.

(d) Construct a minimum state automation equivalent to the finite automation given in below figure.

333556(33)

QP.

Unit-II

- 2. (a) Find a regular expression for all words that contain at least two a's or two b's.
 - (b) Construct a DFA with reduced states equivalent to the regular expression $10 + (0+11) 0^{*}1$.
 - (c) Find the regular expression corresponding to given figure.

(d) Show that the set $L = \{ a^{iz} \mid i \ge 1 \}$ is not regular. 7

Unit-III

3. (a) Let G is given by $S \to aS \mid a$, construct a transition system M accepting L(G).

(b)	Construct	reduced	grammar	equivalent	to	the
	orammar					

grammal
$$S \to aAa, A \to Sb \mid bCC \mid DaA, C \to abb \mid DD,$$
 $E \to aC, D \to aDA.$ 7

- (c) Construct a grammar in Greibach Normal form equivalent to the grammar $S \to AA \mid a, A \to SS \mid b$.
- (d) Write brief discription about :

- (i) Property of context free Language
- Ambiguity in Grammar

Unit-IV

4. (a) What is Push down automata?

(b) Construct pda equivalent to the following context

- free grammar $S \rightarrow OBB \mid B \rightarrow OS \mid IS \mid O \text{ test whether } 010^4 \text{ is in}$ N(A).
- (c) Design a Turing Machine that accepts

$$\left\{ 0^n 1^n \mid n \geq 1 \right\}$$

100]

7

2

(d) Write short notes on: Church's Hypothesis

Universal Turing Machine

Unit-V

[5]

5. (a) Show that the function

$$f(x, y) = x + y$$
 is primitive recursive.

(b) Explain the Turing Model for computation.

(c) Explain recursive and recursive enumerable sets. 7

 $3\frac{1}{2} \times 2 = 7$ (d) Write short notes on:

Space and time complexity of FA

NP-completeness